Statistical mapping between articulatory movements and acoustic spectrum using a Gaussian mixture model

نویسندگان

  • Tomoki Toda
  • Alan W. Black
  • Keiichi Tokuda
چکیده

In this paper, we describe a statistical approach to both an articulatory-to-acoustic mapping and an acoustic-to-articulatory inversion mapping without using phonetic information. The joint probability density of an articulatory parameter and an acoustic parameter is modeled using a Gaussian mixture model (GMM) based on a parallel acoustic-articulatory speech database. We apply the GMM-based mapping using the minimum mean-square error (MMSE) criterion, which has been proposed for voice conversion, to the two mappings. Moreover, to improve the mapping performance, we apply maximum likelihood estimation (MLE) to the GMM-based mapping method. The determination of a target parameter trajectory having appropriate static and dynamic properties is obtained by imposing an explicit relationship between static and dynamic features in the MLE-based mapping. Experimental results demonstrate that the MLE-based mapping with dynamic features can significantly improve the mapping performance compared with the MMSE-based mapping in both the articulatory-to-acoustic mapping and the inversion mapping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping from articulatory movements to vocal tract spectrum with Gaussian mixture model for articulatory speech synthesis

This paper describes a method for determining the vocal tract spectrum from articulatory movements using a Gaussian Mixture Model (GMM) to synthesize speech with articulatory information. The GMM on joint probability density of articulatory parameters and acoustic spectral parameters is trained using a parallel acousticarticulatory speech database. We evaluate the performance of the GMM-based m...

متن کامل

Articulatory controllable speech modification based on statistical feature mapping with Gaussian mixture models

This paper presents a novel speech modification method capable of controlling unobservable articulatory parameters based on a statistical feature mapping technique with Gaussian Mixture Models (GMMs). In previous work [1], the GMM-based statistical feature mapping was successfully applied to acousticto-articulatory inversion mapping and articulatory-to-acoustic production mapping separately. In...

متن کامل

Acoustic-to-articulatory inversion mapping with Gaussian mixture model

This paper describes the acoustic-to-articulatory inversion mapping using a Gaussian Mixture Model (GMM). Correspondence of an acoustic parameter and an articulatory parameter is modeled by the GMM trained using the parallel acousticarticulatory data. We measure the performance of the GMMbased mapping and investigate the effectiveness of using multiple acoustic frames as an input feature and us...

متن کامل

On smoothing articulatory trajectories obtained from Gaussian mixture model based acoustic-to-articulatory inversion.

It is well-known that the performance of acoustic-to-articulatory inversion improves by smoothing the articulatory trajectories estimated using Gaussian mixture model (GMM) mapping (denoted by GMM + Smoothing). GMM + Smoothing also provides similar performance with GMM mapping using dynamic features, which integrates smoothing directly in the mapping criterion. Due to the separation between smo...

متن کامل

Articulatory controllable speech modification based on Gaussian mixture models with direct waveform modification using spectrum differential

In our previous work, we have developed a speech modification system capable of manipulating unobserved articulatory movements by sequentially performing speech-to-articulatory inversion mapping and articulatory-to-speech production mapping based on a Gaussian mixture model (GMM)-based statistical feature mapping technique. One of the biggest issues to be addressed in this system is quality deg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Speech Communication

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2008